41Sm5 phase is found because of Sm addition, Sm promotes the precipitation of Mg5Gd. After solution-aging treatment, the coarsening eutectic structures at grain boundary were dissolved and the precipitation dispersed homogeneous. The finer grain size is observed when content of Sm come to 3wt%. Some of Mg5Gd phase become short rod-like when Sm addition is 5wt%. Under the same experimental temperature, the strength of tested alloys increases at fist and then decrease, and peak strength present when content of Sm is 3wt%. For the same alloy, with increasing of test temperature, the strength increase at fist and then decrease too. When Sm content is 0~1wt%, the temperature of tensile strength peak is 200℃ and the temperature is 250℃ when Sm content is 3~5wt%. There are abnormal temperature effects in tensile tests, the effect is reinforced and the temperature of tensile strength peak rise with the Sm addition."/>

最新色国产精品精品视频,中文字幕日韩一区二区不卡,亚洲有码转帖,夜夜躁日日躁狠狠久久av,中国凸偷窥xxxx自由视频

+Advanced Search
Effect of Sm on microstructures and mechanical properties of Mg-10Gd-0.5Zr alloy
Author:
Affiliation:

School of Materials Science and Engineering,Henan University of Science and Technology

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Mg-10Gd-0.5Zr alloys with 1-5wt% Sm addition were prepared by melting and casting method. The effect of Sm on microstructures and mechanical properties were investigated by tensile tests, SEM and XRD. The results show that the Mg41Sm5 phase is found because of Sm addition, Sm promotes the precipitation of Mg5Gd. After solution-aging treatment, the coarsening eutectic structures at grain boundary were dissolved and the precipitation dispersed homogeneous. The finer grain size is observed when content of Sm come to 3wt%. Some of Mg5Gd phase become short rod-like when Sm addition is 5wt%. Under the same experimental temperature, the strength of tested alloys increases at fist and then decrease, and peak strength present when content of Sm is 3wt%. For the same alloy, with increasing of test temperature, the strength increase at fist and then decrease too. When Sm content is 0~1wt%, the temperature of tensile strength peak is 200℃ and the temperature is 250℃ when Sm content is 3~5wt%. There are abnormal temperature effects in tensile tests, the effect is reinforced and the temperature of tensile strength peak rise with the Sm addition.

    Reference
    Related
    Cited by
Get Citation

[Zhu Li-min, Li Quan-an, Zhou Yao, Yan Jing-long. Effect of Sm on microstructures and mechanical properties of Mg-10Gd-0.5Zr alloy[J]. Rare Metal Materials and Engineering,2019,48(1):171~176.]
DOI:10.12442/j. issn.1002-185X.20170425

Copy
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 23,2017
  • Revised:September 19,2017
  • Adopted:October 12,2017
  • Online: February 18,2019
  • Published: