-1條件下進(jìn)行了熱壓縮試驗(yàn),研究了雙相Mg-Li合金的熱加工性能、顯微組織演變和相組成。建立了整合加工和α-Mg相含量的最佳熱加工窗口。結(jié)果表明,所建立的Arrhenius本構(gòu)模型能夠準(zhǔn)確預(yù)測(cè)軟化過(guò)程中的應(yīng)力流動(dòng)行為。通過(guò)對(duì)合金顯微組織的觀察,發(fā)現(xiàn)動(dòng)態(tài)回復(fù)(DRV)、動(dòng)態(tài)再結(jié)晶(DRX)和α-Mg相變是主要的軟化機(jī)制。α-Mg相以球化和α-Mg相內(nèi)析出的形式轉(zhuǎn)變?yōu)棣?Li相,尤其是在300 ℃以上相變現(xiàn)象顯著。同時(shí),DRX行為容易在β-Li相中發(fā)生,而在α-Mg相中會(huì)被抑制?;趧?dòng)態(tài)材料模型和微觀結(jié)構(gòu)分析,獲得最佳加工窗口:溫度300?350 ℃/0.1?1 s-1和溫度250 ℃/0.1 s-1。;Hot workability, microstructure evolution, and phase composition of dual-phase Mg-Li alloy were investigated via hot compression test at 250?400 °C with strain rates of 0.1?10 s-1. The optimum hot workability window integrating processing and α-Mg content maps was established. Results show that the established Arrhenius constitutive model can accurately predict the stress flow behavior during work softening. In addition, the microstructure of the alloy shows that dynamic recovery (DRV), dynamic recrystallization (DRX) and α-Mg phase transformation are the main softening mechanisms. α-Mg phase is transformed into β-Li phase in forms of both spheroidization and internal precipitation of α-Mg phase, especially above 300 °C. Meanwhile, the DRX process can easily occur in β-Li phase, whereas in the α-Mg phase it is retarded. Based on the dynamic materials model and microstructure analysis, the optimal processing window can be obtained as 300?350 °C/0.1?1 s-1 and 250 °C/0.1 s-1."/>
使用Chrome瀏覽器效果最佳,繼續(xù)瀏覽,你可能不會(huì)看到最佳的展示效果,
確定繼續(xù)瀏覽么?
copyright ? 2018-2020