20Cu2Mn3 phase resulting in the effective decreasing of coarse AlCuYb phases. The addition of Zr to AlZnMgCuYb alloy can effectively inhibit the recrystallization of ɑ(Al) matrix by the formation of nano-scale coherent Al3(Yb, Zr) dispersoids. However, the formation of AlCuYb phases consuming Yb will reduce secondary coherent Al3(Yb, Zr) precipitation and particleSstimulated partial recrystallization nucleation, resulting in a decline in strength of AlZnMgCuYb-Zr alloy. T6-tempered AlZnMgCuYb-Zr and AlZnMgCuYb-Mn alloys still remain an unrecrystallized fiber-like structure, the fraction of low-angle grain boundaries (LAGBs) increased up to 50%, and the average grain size decreased to 2~7 μm. However, more homogeneous recrystallization grains are observed in Cr or Ti containing AlZnMgCuYb alloy, the fraction of high-angle grain boundaries (HAGBs) and the average grain size achieve 80% and 40-96 μm, respectively. The primary 1~3 μm Al2CuMg particles, not coarse AlCuYb preferentially cracked, and cracking propagated along high-angle recrystallized grain boundaries or original grain boundaries with continuous, coarser grain boundary precipitates and broadening precipitate-freeSzones (PFZs) at its periphery."/>
State Key Laboratory of Powder Metallurgy,Central South University
TG 146.21
[Fang Huachan, Yang Hailin, Zhu Jiaming, Xiao Peng. Effect of Minor Cr, Mn, Zr or Ti on Recrystallization, SSecondary Phases and Fracture Behaviour of Al-Zn-Mg-Cu-Yb Alloys[J]. Rare Metal Materials and Engineering,2020,49(3):797~810.]
DOI:10.12442/j. issn.1002-185X. E20180033