-1. True stress-strain curves, average grain size, and DRX volume fraction data were obtained under various deformation conditions. Model for the DRX volume fraction and grain size of the as-extruded GH4710 alloy have been established using a statistical regression method. The developed model was implemented in the Derform-3D software, and isothermal compression simulations were conducted using the finite element method (FEM). The simulation results of the isothermal compression experiments have verified the accuracy of the model. Subsequently, a simulation of a turbine disk forging was conducted using the model to determine the optimal process parameters by analyzing the results of the simulation. The comparison revealed a strong correlation between the simulated results and the actual microstructure of the turbine disk forged with the optimal process parameters. Therefore, the established DRX model serves as a fundamental reference for understanding the microstructure evolution during the as-extruded GH4710 alloy hot-deformation process."/>

最新色国产精品精品视频,中文字幕日韩一区二区不卡,亚洲有码转帖,夜夜躁日日躁狠狠久久av,中国凸偷窥xxxx自由视频

+Advanced Search
Dynamic Recrystallization Behavior and Microstructure Evolution of GH4710 Alloy Prepared by Ingot Extrusion
Author:
Affiliation:

AECC Beijing Institute of Aeronautical Materials

Clc Number:

Fund Project:

The Key Field Research Foundation of Beijing Institute of Aeronautical Materials (No. KJSC192309)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The dynamic recrystallization (DRX) behavior and microstructure evolution of the as-extruded GH4710 alloy were investigated through isothermal compression experiments and quantitative metallographic analysis. The study was conducted at temperatures ranging from 1050 to 1120 °C and strain rates ranging from 0.01 to 5 s-1. True stress-strain curves, average grain size, and DRX volume fraction data were obtained under various deformation conditions. Model for the DRX volume fraction and grain size of the as-extruded GH4710 alloy have been established using a statistical regression method. The developed model was implemented in the Derform-3D software, and isothermal compression simulations were conducted using the finite element method (FEM). The simulation results of the isothermal compression experiments have verified the accuracy of the model. Subsequently, a simulation of a turbine disk forging was conducted using the model to determine the optimal process parameters by analyzing the results of the simulation. The comparison revealed a strong correlation between the simulated results and the actual microstructure of the turbine disk forged with the optimal process parameters. Therefore, the established DRX model serves as a fundamental reference for understanding the microstructure evolution during the as-extruded GH4710 alloy hot-deformation process.

    Reference
    Related
    Cited by
Get Citation

[Chen Youhong, Lan Bo, Lin Yingying. Dynamic Recrystallization Behavior and Microstructure Evolution of GH4710 Alloy Prepared by Ingot Extrusion[J]. Rare Metal Materials and Engineering,,().]
DOI:10.12442/j. issn.1002-185X.20240555

Copy
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 28,2024
  • Revised:November 14,2024
  • Adopted:November 18,2024
  • Online: April 10,2025
  • Published: