5Co19Hf0.4 alloy and Sm5Co19Hf0. 4CNTs0. 4 alloy with high room-temperature coercivity were produced. The microstructure, crystal structure and magnetic were studied. The results show that the Hf elements and CNTs mixed added did not lead to phase decomposition of Ce5Co19 type structure, meanwhile the microstructure possess fine grain size and uniform distribution. Energy Dispersive X-ray Spectrometry (EDX) analysis confirmed that CNTs move into grain boundaries of the nanocrystalline Sm5Co19Hf0.4CNTs0.4alloy, which can improve the coercivity of the nanocrystalline Sm5Co19 alloy for the grain boundary pinning effect. Rietyeld refinement showed that Hf comes into the Sm vacancy decreasing the lattice parameters and increasing the axial ratio c/a , which furtherly enhance the magnetocrystalline anisotropy , thus strengthen the coercivity of nanocrystalline alloy. In this paper, the results of the study can promote the design of Sm-Co alloy with high magnetocrystalline anisotropy and intrinsic coercivity."/>
[wangdongxin, qiaoyinkai, liudong, huagang, wanghaibin, liuxuemei, songxiaoyan. Effect of Alloy Structure and the Magnetic Mix Doping Hf Elements and CNTs on Nanocrystalline Sm5Co19 Alloy[J]. Rare Metal Materials and Engineering,2018,47(3):1001~1006.]
DOI:[doi]