0.1, both of the dendrite and the spinodal decomposition microstructure gradually disappeared, but much borides formed instead. The transformation is attributed to the high negative mixing enthalpy of Cr-B and Co-B. The microstructures of AlCoCrFeNiBx high entropy alloys changed from B2 BCC structures to B2 BCC FCC structures, finally formed B2 BCC FCC and borides mixing structures with the increased B elements. And the hardness declined from HV486.0 to HV460.7, then rose to HV615.7 as the addition of B element. The lowest hardness value is obtained when x=0.1. The compressive fracture strength shows a distinct decrease with B addition. The maximum compression strength is 2227MPa when x=0.25. But when x reached 0.75, the samples fractured during the elastic deformation due to the formation of hard and brittle borides. The coercive forces and the specific saturation magnetizations of the alloys decrease as the contents B element increase. The decreasing coercive forces show a better soft magnetic behavior."/>
[Chen Qiushi, Dong Yong, Zhang Junjia, 盧一平. Microstructure and properties of AlCoCrFeNiBx high entropy alloys[J]. Rare Metal Materials and Engineering,2017,46(3):651~656.]
DOI:[doi]