0.2由3461 MPa降低到3095 MPa。光譜的積分面積和電子溫度隨激光功率的增大而增大。涂層的一次枝晶間距與光譜信號呈正相關,而涂層的顯微硬度與光譜信號呈負線性相關。與電子溫度相比,積分面積在預測一次枝晶間距和顯微硬度方面顯示出更好的潛力。;The relationship between the optical emission spectroscopy and the microstructure of CoCrMoW coatings by laser melting deposition was investigated. The relationship between the primary dendrite spacing and microhardness of CoCrMoW coatings at different laser powers of spectral signal was studied. A new spectral signal index, the integral area, was proposed, and the electron temperature was calculated from four discrete Cr I spectral lines. The results show that with increasing the laser power from 400 W to 1000 W, the average primary dendrite spacing is increased from 3.426 μm to 7.420 μm, and the microhardness HV0.2 is reduced from 3461 MPa to 3095 MPa. The integral area and electron temperature of the spectral is also increased with increasing the laser power. The primary dendrite spacing of the coating is positively linear-related with the spectral signal, while the microhardness of the coatings is negatively linear-related with the spectral signal. In this research, compared with the electron temperature, the integral area shows a better potential for the prediction of the primary dendrite spacing and microhardness of coatings."/>
使用Chrome瀏覽器效果最佳,繼續(xù)瀏覽,你可能不會看到最佳的展示效果,
確定繼續(xù)瀏覽么?
copyright ? 2018-2020