2+的移動(dòng)障礙,最終提高鎂離子電池CuS正極材料的充放電性能。;CuS-C50, the cathode materials for magnesium ion batteries, was synthesized by adding the surfactant cetyltrimethyl ammonium bromide (CTAB) and adjusting the percentage of ethylene glycol to 50vol% in hydrothermal synthesis process. Results show that CuS-C50 has the complete nanoflower structure. In aluminum chloride-pentamethylcydopentodiene/tetrahydrofuran (APC/THF) electrolyte, the CuS-C50 exhibits a high specific capacity of 331.19 mAh/g when the current density is 50 mA/g and still keeps a specific capacity of 136.92 mAh/g over 50 cycles when the current density is 200 mA/g. Results of morphology characterizations indicate that the complete nanoflower structure can provide more active sites and reduce the barriers for Mg2+ movement, eventually improving the charge and discharge performance of the CuS cathode materials for magnesium ion batteries."/>
使用Chrome瀏覽器效果最佳,繼續(xù)瀏覽,你可能不會(huì)看到最佳的展示效果,
確定繼續(xù)瀏覽么?