14m-2,較初始態(tài)高36%;銅合金在高溫?cái)U(kuò)散焊后呈現(xiàn)退火孿晶和等軸晶的粗大混晶組織,高溫再結(jié)晶使其位錯(cuò)密度回復(fù)至初始態(tài)。高壓扭轉(zhuǎn)變形后擴(kuò)散焊后鎢和銅的顯微硬度分別約為469 ~ 473HV和62 ~ 73HV,較初始態(tài)擴(kuò)散焊提升了48%和9%,表明該工藝為制備高性能鎢銅復(fù)合材料的有效手段。"/>

最新色国产精品精品视频,中文字幕日韩一区二区不卡,亚洲有码转帖,夜夜躁日日躁狠狠久久av,中国凸偷窥xxxx自由视频

+高級檢索
高壓扭轉(zhuǎn)變形缺陷對鎢銅擴(kuò)散焊顯微組織和力學(xué)性能的影響
作者:
作者單位:

合肥工業(yè)大學(xué)

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)青年科學(xué)基金資助(項(xiàng)目號51705118),中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助(項(xiàng)目號PA2022GDGP0029)


Effect of Lattice Defects induced by High-pressure Torsion on Microstructure and Microhardness of W/Cu composite materials processed by Diffusion Welding
Author:
Affiliation:

Hefei University of Technology

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    對商業(yè)純鎢和銅鉻鋯合金在900 ~ 980℃進(jìn)行壓力80 MPa、時(shí)間2h的真空擴(kuò)散焊(diffusion welding, DFW)試驗(yàn),并對扭轉(zhuǎn)圈數(shù)為5 ~ 20圈的高壓扭轉(zhuǎn)(high-pressure torsion, HPT)變形鎢和銅合金進(jìn)行900 ℃真空擴(kuò)散焊試驗(yàn),獲得了界面連接結(jié)合良好、力學(xué)性能優(yōu)良的鎢銅復(fù)合材料。借助金相顯微鏡(optical microscopy, OM)、元素線掃描技術(shù)(energy dispersive spectroscopy, EDS)和X射線衍射技術(shù)(X-ray diffraction, XRD),對比分析了高壓扭轉(zhuǎn)引入的晶體缺陷對擴(kuò)散焊后鎢和銅元素?cái)U(kuò)散、顯微組織和顯微硬度的影響規(guī)律。結(jié)果表明,隨著真空擴(kuò)散焊溫度升高,鎢和銅的元素?cái)U(kuò)散深度分別由0.4μm和0.9μm逐漸提升至0.9μm和1.7μm,高溫導(dǎo)致晶粒組織異常長大,顯微硬度顯著下降。HPT變形引入的高密度位錯(cuò)和超細(xì)晶組織促進(jìn)擴(kuò)散焊過程中的原子擴(kuò)散與遷移,20圈變形擴(kuò)散焊試樣的鎢和銅元素?cái)U(kuò)散深度達(dá)到2.4μm和3.1μm,較初始態(tài)提升了5倍和2.4倍;鎢變形組織在擴(kuò)散焊后得到有效保留,條帶狀晶粒有限長大至62μm×25μm,位錯(cuò)密度約為1.5×1014m-2,較初始態(tài)高36%;銅合金在高溫?cái)U(kuò)散焊后呈現(xiàn)退火孿晶和等軸晶的粗大混晶組織,高溫再結(jié)晶使其位錯(cuò)密度回復(fù)至初始態(tài)。高壓扭轉(zhuǎn)變形后擴(kuò)散焊后鎢和銅的顯微硬度分別約為469 ~ 473HV和62 ~ 73HV,較初始態(tài)擴(kuò)散焊提升了48%和9%,表明該工藝為制備高性能鎢銅復(fù)合材料的有效手段。

    Abstract:

    The diffusion welding (DFW) processing for commercial pure tungsten and CuCrZr alloy was carried out at 900 ~ 980℃ with pressure of 80MPa and holding time of 2h. The high-pressure torsion (HPT) processed for tungsten and CuCrZr alloy with 5 ~ 20 turns were also DFW processed at 900℃, and the W/Cu composite materials with noble interfacial bonding and mechanical property were obtained. The effects of lattice defects induced by HPT on the element diffusion, microstructure evolution and microhardness improvement were analyzed by optical microscopy (OM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the diffusion depth for W and Cu respectively increase from 0.4μm and 0.9μm to 0.9μm and 1.7μm with the increasing DFW temperature, the high temperature leads to the obvious grain coarsening and microhardness decreasing. The high-density dislocations and ultrafine grains induced by HPT accelerate the element diffusion and immigration during DFW. After 20 turns of HPT followed by DFW, the diffusion depth for W and Cu reach to 2.4μm and 3.1μm, which is the 6 times and 3.4 times higher than the initial. The deformation microstructure of tungsten remained after DFW with slight grain growth to 62μm×25μm and the dislocation density was about 1.5×1014m-2, which is 36% higher than the initial. The coarse mixture microstructure of CuCrZr alloy after DFW with HPT composite with annealing twinning grains and equiaxed grains, and the high temperature of DFW lead to complete recovery of dislocations accumulated by HPT. The microhardness of W and CuCrZr after DFW with HPT are about 469 ~ 473Hv0.5 and 62 ~ 73Hv0.1 respectively, which is 48% and 9% higher than the value of initial sample with DFW. The results illustrate that HPT processing followed by DFW is benefit to fabricate high performance W/Cu composite materials.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王雪,焦奧飛,朱亞輝,王明明,薛克敏.高壓扭轉(zhuǎn)變形缺陷對鎢銅擴(kuò)散焊顯微組織和力學(xué)性能的影響[J].稀有金屬材料與工程,2023,52(12):4220~4226.[Wang Xue, Jiao Aofei, Zhu Yahui, Wang Mingming, Xue Kemin. Effect of Lattice Defects induced by High-pressure Torsion on Microstructure and Microhardness of W/Cu composite materials processed by Diffusion Welding[J]. Rare Metal Materials and Engineering,2023,52(12):4220~4226.]
DOI:10.12442/j. issn.1002-185X.20220915

復(fù)制
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-11-24
  • 最后修改日期:2023-03-10
  • 錄用日期:2023-03-15
  • 在線發(fā)布日期: 2023-12-29
  • 出版日期: 2023-12-22