xCr1–x體系RHEAs的實驗結果顯示,RF和ANN的預測精度更高,精準預測了11個SS和3個SS+IM合金的相組成。采用了SHAP(SHapley Additive exPlanations)模型來解釋精度最高的 ANN 模型,并研究每個特征對相形成的貢獻。5個特征的重要性順序是混合焓(ΔHmix)、原子尺寸差(δ)、價電子濃度(VEC)、混合熵(ΔSmix)和電負性差(Δχ),其中ΔHmix的平均SHAP值大約是Δχ的5倍,是ΔSmix的4倍。較大的ΔHmix、較小的δ和VEC可能有助于RHEA中固溶體的形成。"/>
國防科技大學 空天科學學院 材料科學與工程系,湖南 長沙 410073
National Natural Science Foundation of China (Grant Nos. U20A20231 and 11972372) and College of Aerospace Science and Engineering Youth Talent Fund, National University of Defense Technology (Grant No. KY0505072209).
Department of Materials Science and Engineering, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
National Natural Science Foundation of China (U20A20231, 11972372); College of Aerospace Science and Engineering Youth Talent Fund, National University of Defense Technology (KY0505072209)
趙鳳媛,葉益聰,張周然,李亞豪,王潔,唐宇,李順,白書欣.基于可解釋機器學習模型的難熔高熵合金相預測[J].稀有金屬材料與工程,2023,52(4):1192~1200.[Zhao Fengyuan, Ye Yicong, Zhang Zhouran, Li Yahao, Wang Jie, Tang Yu, Li Shun, Bai Shuxin. Interpretable Machine Learning Model-Based Phase Prediction for Refractory High-Entropy Alloys[J]. Rare Metal Materials and Engineering,2023,52(4):1192~1200.]
DOI:10.12442/j. issn.1002-185X.20220750