最新色国产精品精品视频,中文字幕日韩一区二区不卡,亚洲有码转帖,夜夜躁日日躁狠狠久久av,中国凸偷窥xxxx自由视频

+高級(jí)檢索
基于深度學(xué)習(xí)算法的大尺寸鋁合金中第二相的識(shí)別提取與定量統(tǒng)計(jì)分析
作者:
作者單位:

1.鋼鐵研究總院;2.鋼研納克檢測(cè)技術(shù)股份有限公司;3.鋼鐵研究總院 & 鋼研納克檢測(cè)技術(shù)股份有限公司

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃課題材料組織結(jié)構(gòu)高精多尺度表/界面圖像采集與識(shí)別技術(shù)資助(項(xiàng)目號(hào)2017YFB0702303)


Identification and quantitative statistical analysis of second phase in aluminum alloy based on deep learning algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    鋁合金中第二相粒子是在鑄造過(guò)程中產(chǎn)生并對(duì)材料的物理化學(xué)性能有著顯著影響的顯微組織。目前常用的第二相的定量表征方法存在人工工作量和消耗時(shí)間過(guò)大的問(wèn)題。本文提出一種基于深度學(xué)習(xí)的大尺寸鋁合金中第二相的快速提取與定量統(tǒng)計(jì)表征方法,通過(guò)對(duì)圖像中的第二相特征的快速、智能化提取,實(shí)現(xiàn)多角度精細(xì)化的定量統(tǒng)計(jì)。研究結(jié)果顯示,該方法的圖像處理時(shí)間與軟件批量處理時(shí)間一樣為0.4s/張,但圖像分割精度從42.74%提升到91.12%。從數(shù)據(jù)集制作方面,本方法用MIPAR軟件結(jié)合人工微調(diào)代替?zhèn)鹘y(tǒng)的手工標(biāo)記,大大節(jié)省了人工時(shí)間。為了滿足精細(xì)化表征的要求,對(duì)11萬(wàn)張包括四種類型的全視場(chǎng)7B05鋁合金掃描電鏡圖像進(jìn)行分割提取,計(jì)算了第二相的長(zhǎng)寬比、最短間距、面分布以及線分布等新的表征參數(shù),其中線分布結(jié)果證明,與傳統(tǒng)的隨機(jī)選取視場(chǎng)的統(tǒng)計(jì)結(jié)果相比較,本文使用的全視場(chǎng)多角度的統(tǒng)計(jì)表征方式誤差更小,特征信息更全面。定量統(tǒng)計(jì)結(jié)果顯示,厚度為6mm的鑄軋7B05-T4鋁合金截面,在最近鄰上下表面的位置第二相的平均面積最小,在厚度在3mm的位置存在波谷值;將截面均分為三個(gè)區(qū)域,第二相的平均面積分別為1.99μm2、1.84μm2、2.18μm2,平均長(zhǎng)寬比分別為1.89、1.95、1.84,第二相數(shù)量分別為33574、33207、42035個(gè)。以上結(jié)果表明,基于深度學(xué)習(xí)的鋁合金中第二相的快速提取與定量統(tǒng)計(jì)表征方法可進(jìn)行多角度的分析數(shù)據(jù)與挖掘,為組織、性能研究提供依據(jù)。

    Abstract:

    The second phase particles in aluminum alloy are produced in the casting process and have a significant effect on the physical and chemical properties of the material. At present, the commonly used quantitative characterization methods of the second phase have the problems of too much manual work and time consumption. In this paper, a fast extraction and quantitative statistical characterization method of the second phase in large-scale aluminum alloy based on deep learning is proposed. This method can achieve multi angle refined quantitative statistics by fast and intelligent extraction of the second phase features in the image. The results show that the image processing time of this method is the same as that of software batch processing, which is only 0.4s/sheet, but the image segmentation accuracy is improved from 42.74% to 91.12%. In order to meet the requirements of fine characterization, 110000 full field sem images of 7B05 aluminum alloy, including four types, were segmented and extracted. The new characterization parameters of the second phase, such as aspect ratio, shortest distance, surface distribution and line distribution, were calculated. The results of line distribution show that the full field multi angle method used in this paper is better than the traditional statistical results of randomly selected field of view. This method shows that the error of statistical representation is smaller and the feature information is more comprehensive. The quantitative statistical results show that the average area of the second phase is the smallest at the nearest upper and lower surface of the cast rolled 7b05-t4 aluminum alloy section with a thickness of 6 mm, and there is a trough value near the thickness of 3 mm; The average area of the second phase is 1.99 μ m2, 1.84 μ m2 and 2.18 μ m2, the average aspect ratio is 1.89, 1.95 and 1.84, and the number of the second phase is 33574, 33207 and 42035, respectively. The above results show that the rapid extraction and quantitative statistical characterization method of the second phase in aluminum alloy based on deep learning can carry out multi angle data analysis and mining, and provide the basis for the study of microstructure and properties.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

萬(wàn)衛(wèi)浩,孫丹丹,李冬玲,趙雷,沈?qū)W靜,王海舟.基于深度學(xué)習(xí)算法的大尺寸鋁合金中第二相的識(shí)別提取與定量統(tǒng)計(jì)分析[J].稀有金屬材料與工程,2022,51(2):525~534.[WANWEIHAO, Sun Dandan, Li Dongling, Zhao Lei, Shen Xuejing, Wang Haizhou. Identification and quantitative statistical analysis of second phase in aluminum alloy based on deep learning algorithm[J]. Rare Metal Materials and Engineering,2022,51(2):525~534.]
DOI:10.12442/j. issn.1002-185X.20210164

復(fù)制
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-03-01
  • 最后修改日期:2021-07-01
  • 錄用日期:2021-07-09
  • 在線發(fā)布日期: 2022-03-09
  • 出版日期: 2022-02-28