最新色国产精品精品视频,中文字幕日韩一区二区不卡,亚洲有码转帖,夜夜躁日日躁狠狠久久av,中国凸偷窥xxxx自由视频

+高級(jí)檢索
基于神經(jīng)網(wǎng)絡(luò)的噴丸25CrMo合金疲勞壽命及殘余應(yīng)力松弛行為預(yù)測(cè)研究
作者:
作者單位:

西南交通大學(xué)牽引動(dòng)力國(guó)家重點(diǎn)實(shí)驗(yàn)室

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

TG174.4

基金項(xiàng)目:

國(guó)家自然科學(xué)基金資助(51675445,U1534209),牽引動(dòng)力國(guó)家重點(diǎn)實(shí)驗(yàn)室自主研究課題(2019TPL-T06),國(guó)家自然科學(xué)基金項(xiàng)目(面上項(xiàng)目,重點(diǎn)項(xiàng)目,重大項(xiàng)目)


Prediction of fatigue life and residual stress relaxation behavior of shot-peened 25CrMo axle steel based on Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    首先,本文采用BP神經(jīng)網(wǎng)絡(luò)建立了噴丸25CrMo車(chē)軸鋼疲勞壽命預(yù)測(cè)模型。然后,在此基礎(chǔ)上采用遺傳算法(GA)對(duì)BP神經(jīng)網(wǎng)絡(luò)的預(yù)測(cè)精度進(jìn)行了優(yōu)化。此外,還采用了徑向基神經(jīng)網(wǎng)絡(luò)(RBF)進(jìn)行建模分析,并與以上兩種模型的預(yù)測(cè)結(jié)果進(jìn)行對(duì)比,結(jié)果表明:遺傳算法優(yōu)化的BP神經(jīng)網(wǎng)絡(luò)(GA-BP)相比于BP和RBF神經(jīng)網(wǎng)絡(luò)具有更高的預(yù)測(cè)精度,其中訓(xùn)練集和測(cè)試集的平均預(yù)測(cè)精度分別為91.5%和85.4%。然后,基于GA-BP神經(jīng)網(wǎng)絡(luò)模型的連接權(quán)值矩陣和Garson方程進(jìn)行了靈敏度分析,從而進(jìn)一步量化了輸入影響因素對(duì)噴丸25CrMo車(chē)軸鋼疲勞壽命的相對(duì)影響比重;最后,還采用GA-BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)了噴丸25CrMo車(chē)軸鋼表面殘余壓應(yīng)力的松弛行為,結(jié)果表明:測(cè)試集的平均預(yù)測(cè)誤差僅為3.4%,表明了該神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)性能良好。綜上所述,本文采用神經(jīng)網(wǎng)絡(luò)建模分析了噴丸25CrMo車(chē)軸鋼的疲勞性能和殘余壓應(yīng)力松弛行為,顯著降低了傳統(tǒng)疲勞試驗(yàn)所需的成本,并且還保證了較高的準(zhǔn)確性。

    Abstract:

    Firstly, the fatigue life prediction model of shot-peened 25CrMo axle steel was established by using BP neural network. Then, genetic algorithm (GA) was used to optimize the prediction accuracy of BP neural network. In addition, radial basis function neural network (RBF) was used for modeling and analysis, and compared with the prediction results of the above two models. The results showed that GA-BP had higher prediction accuracy than BP and RBF neural network, and the average prediction accuracy of training set and test set were 91.5% and 85.4% respectively. Then, sensitivity analysis was carried out based on the connection weight matrix of GA-BP neural network model and Garson equation, so as to further quantify the relative influence proportion of the input influencing factors on the fatigue life of shot-peened 25CrMo axle steel. Finally, GA-BP neural network was used to predict the relaxation behavior of compressive residual stress on the surface of shot-peened 25CrMo axle steel. The results showed that the average prediction error of the test set was only 3.4%, indicating that the network prediction performance was good. In conclusion, this paper used neural network modeling to analyze the fatigue performance and compressive residual stress relaxation behavior of shot-peened 25CrMo axle steel, which significantly reduced the cost of traditional fatigue test and ensured high accuracy.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

蘇凱新,張繼旺,李行,張金鑫,朱守東,易科尖.基于神經(jīng)網(wǎng)絡(luò)的噴丸25CrMo合金疲勞壽命及殘余應(yīng)力松弛行為預(yù)測(cè)研究[J].稀有金屬材料與工程,2020,49(8):2697~2705.[Su Kaixin, Zhang Jiwang, Li Hang, Zhang Jinxin, Zhu Shoudong, Yi Kejian. Prediction of fatigue life and residual stress relaxation behavior of shot-peened 25CrMo axle steel based on Neural Network[J]. Rare Metal Materials and Engineering,2020,49(8):2697~2705.]
DOI:10.12442/j. issn.1002-185X.20200202

復(fù)制
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-03-24
  • 最后修改日期:2020-04-18
  • 錄用日期:2020-04-26
  • 在線(xiàn)發(fā)布日期: 2020-09-27
  • 出版日期: