最新色国产精品精品视频,中文字幕日韩一区二区不卡,亚洲有码转帖,夜夜躁日日躁狠狠久久av,中国凸偷窥xxxx自由视频

+高級檢索
機器學習輔助U-Mo合金等溫分解參數(shù)設計
作者:
作者單位:

中核北方核燃料元件有限公司

作者簡介:

通訊作者:

中圖分類號:

基金項目:


Machine Learning Assisted Design of Isothermal Decompositon Parameters of U-Mo Alloy
Author:
Affiliation:

China North Nuclear Fuel Co.,Ltd

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    U-Mo合金是一種在研究試驗堆中極具發(fā)展?jié)摿Φ膹浬⑷剂稀L岣邭浠?脫氫制粉效率是通過粉末冶金方法高效制備U-Mo合金彌散燃料的前提。優(yōu)化均勻化處理溫度、等溫時效溫度、等溫時效時間、Mo含量等參量有利于增加U-Mo合金α相含量,進而提高U-Mo合金制粉效率。機器學習輔助設計材料的方法能夠大幅減少昂貴耗時的試驗次數(shù),提高材料研發(fā)效率。本文將機器學習方法應用于U-Mo合金等溫分解參數(shù)的快速設計,以合金硬度為設計指標,基于少量數(shù)據(jù)建立了合金硬度與上述參數(shù)之間的機器學習支持向量機模型。在對硬度預測的基礎上,比較了基于預測值和基于預期提高的兩類實驗設計算法在優(yōu)化效率方面的差異。結果表明,基于預期提高的實驗設計算法通過少量迭代試驗能夠明顯提高硬度,而基于預測值的設計算法對硬度提高不明顯。應用上述機器學習輔助設計方法,通過4次實驗成功地確定了該合金等溫分解最佳參數(shù)組合為時效溫度為565 °C,時效時間20小時以上,均勻化處理溫度為900~950 °C,Mo含量為6wt.%,在該工藝窗口下處理的合金硬度最高,制粉率最高。本研究對利用機器學習方法快速優(yōu)化U基合金工藝參數(shù)進行了初步嘗試,這類基于數(shù)據(jù)的方法能夠有效提高材料研發(fā)效率。

    Abstract:

    U-Mo alloy is with great development potential as a kind of dispersive fuel in research and test reactors. Improving the efficiency of powder obtention via hydride-dehydride process is a prerequisite for efficient powder metallurgy preparation of U-Mo alloy dispersion fuels. Optimizing parameters such as homogenization temperature, isothermal aging temperature, isothermal aging time, and Mo content is beneficial to increase the α-phase content of U-Mo alloys, thereby improving the efficiency of the power obtention of U-Mo alloy. Machine learning aided design of materials can greatly reduce the trials of expensive and time-consuming experiments and improve the efficiency of material development. In this paper, a machine learning method is applied to the rapid design of isothermal decomposition parameters of U-Mo alloys. With the hardness of the alloy as a design index, a machine learning support vector machine (SVM) model between the alloy hardness and the above parameters is established based on a small amount of data. Based on the prediction of hardness, the differences in optimization efficiency between the two types of experimental design algorithms based on predicted values and based on expected improvement are compared. The results show that the experimental design algorithm based on the expected improvement can significantly improve the hardness through a small number of iterative experiments, while the design algorithm based on the predicted value does not significantly improve the hardness. Using the above-mentioned machine learning aided design method, the optimal parameter combination for isothermal decomposition of the alloy was successfully determined through 4 experiments. When the aging temperature is 565 °C, the aging time is more than 20 h, the homogenization temperature is 900~950 °C, and the Mo content is 6wt.%, the hardness of the alloy processed is the highest, and the powder obtention rate is the highest. This study made a preliminary attempt to use machine learning methods to quickly optimize U-based alloy process parameters. Such data-based methods can effectively improve the efficiency of material development.

    參考文獻
    相似文獻
    引證文獻
引用本文

張雪偉,康世棟,王兆松,董青,劉偉,董秋實,喬帥,楊志遠,劉志華,陳連重.機器學習輔助U-Mo合金等溫分解參數(shù)設計[J].稀有金屬材料與工程,2020,49(11):3835~3840.[Zhang Xuewei, Kang Shidong, Wang Zhaosong, Dong Qing, Liu Wei, Dong Qiushi, Qiao Shuai, Yang Zhiyuan, Liu Zhihua, Chen Lianzhong. Machine Learning Assisted Design of Isothermal Decompositon Parameters of U-Mo Alloy[J]. Rare Metal Materials and Engineering,2020,49(11):3835~3840.]
DOI:10.12442/j. issn.1002-185X.20191047

復制
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-12-10
  • 最后修改日期:2020-04-17
  • 錄用日期:2020-04-26
  • 在線發(fā)布日期: 2020-12-09
  • 出版日期: