最新色国产精品精品视频,中文字幕日韩一区二区不卡,亚洲有码转帖,夜夜躁日日躁狠狠久久av,中国凸偷窥xxxx自由视频

+高級檢索
基于BP神經(jīng)網(wǎng)絡(luò)的BSTMUF601高溫合金蠕變本構(gòu)模型
作者:
作者單位:

1.北京科技大學(xué) 機(jī)械工程學(xué)院;2.清華大學(xué) 核能與新能源技術(shù)研究院

作者簡介:

通訊作者:

中圖分類號:

基金項目:


Creep deformation constitutive model of BSTMUF601 superalloy using the BP neural network method
Author:
Affiliation:

1.School of Mechanical Engineering,University of Science and Technology Beijing;2.Collaborative Innovation Center of Advanced Nuclear Energy Technology,the Key Laboratory of Advanced Reactor Engineering and Safety,Ministry of Education,Institute of Nuclear and New Energy Technology of Tsinghua University

Fund Project:

Natural Science Foundation of Beijing Municipality (3182025); NSAF (U1730121); National Natural Science Foundation of China (51575039)

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    通過對BSTMUF601高溫合金在1253 K和1368 K不同載荷下蠕變試驗及基于恒應(yīng)力條件的θ映射法蠕變本構(gòu)模型,研究馬弗爐真實服役環(huán)境下的蠕變行為。為了解決蠕變過程試件截面積減小的問題,提出一種直徑修正法近似獲得試件的真實應(yīng)力和應(yīng)變??紤]在恒載條件下,非線性多元擬合方法不能準(zhǔn)確標(biāo)定蠕變本構(gòu)模型的參數(shù),本文基于上述修正的應(yīng)力和應(yīng)變通過誤差反向傳播(BP)神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)算法逆向標(biāo)定θ映射法模型參數(shù)。結(jié)果表明,預(yù)測結(jié)果與實驗結(jié)果吻合良好,最大相對誤差小于12 %。此外,模型計算的表觀蠕變應(yīng)力指數(shù)和TEM圖像表明位錯攀爬是蠕變變形主導(dǎo)機(jī)制,說明BP神經(jīng)網(wǎng)絡(luò)方法對BSTMUF601高溫合金蠕變本構(gòu)模型參數(shù)識別和預(yù)測方面的優(yōu)勢。

    Abstract:

    A series of creep tests of BSTMUF601 superalloy were carried out at different loads and temperatures to investigate creep behaviors at actual service environment. The diameter correction method was proposed to evaluate true stress and strain approximately for addressing the issue that the decrease of sectional area of specimens. And the θ projection creep constitutive model was used for characterizing creep deformation behaviors considering the advantage of reflecting the deformation process under constant true stress conditions. However, the parameters of creep constitutive model cannot be identified accurately by nonlinear multivariate fitting method under constant load conditions. In this paper, these constitutive parameters were calibrated by BP neural network importing temperature, time, stress and strain evaluated from the above correction method as inputs with back-propagation learning algorithm. Consequently, the calibrated constitutive model is determined, the predicted values coincide well with experimental results and the maximum relative error is less than 12%. Moreover, both the apparent creep stress exponent estimated by θ model, experimental results and the TEM patterns indicated the creep deformation mechanism may be dislocation climb, further indicating the BP neural network method is feasible for predicting complex models.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王春暉,孫志輝,趙加清,孫朝陽,王文瑞,張佳明.基于BP神經(jīng)網(wǎng)絡(luò)的BSTMUF601高溫合金蠕變本構(gòu)模型[J].稀有金屬材料與工程,2020,49(6):1885~1893.[Wang Chunhui, Sun Zhihui, Zhao Jiaqing, Sun Chaoyang, Wang Wenrui, Zhang Jiaming. Creep deformation constitutive model of BSTMUF601 superalloy using the BP neural network method[J]. Rare Metal Materials and Engineering,2020,49(6):1885~1893.]
DOI:10.12442/j. issn.1002-185X.20190149

復(fù)制
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-02-23
  • 最后修改日期:2019-04-08
  • 錄用日期:2019-04-10
  • 在線發(fā)布日期: 2020-07-09
  • 出版日期: