m,并獲得細(xì)針狀的α + β組織和殘余的βm相;當(dāng)冷卻速度大于3 °C/s時(shí),Ti-1300合金基本獲得全部β相,所以把3 °C/s認(rèn)為是合金的臨界冷卻轉(zhuǎn)變速度。在緩慢冷卻過程中,Mo當(dāng)量梯度是合金中α相生長(zhǎng)主要?jiǎng)恿?。隨著冷卻速度的增加,Ti-1300合金的顯微硬度先增加后降低,在冷卻速度為0.3 °C/s時(shí),顯微硬度達(dá)到最大值。"/>
1.貴州大學(xué) 材料與冶金學(xué)院;2.西北有色金屬研究院
國(guó)家自然科學(xué)基金項(xiàng)目(面上項(xiàng)目,重點(diǎn)項(xiàng)目,重大項(xiàng)目)
1.College of Materials and metallurgy,Guizhou University;2.Northwest Institute for Nonferrous Metal Research,Xi’an
萬(wàn)明攀,溫鑫,馬瑞,趙永慶.連續(xù)冷卻條件下Ti-1300合金的組織演變與連續(xù)轉(zhuǎn)變圖[J].稀有金屬材料與工程,2019,48(1):97~103.[MingPan Wan, Xin Wen, Rui Ma, YongQing Zhao. Microstructural Evolution and Continuous Cooling Transformation Diagram in Ti-1300 Alloy under Continuous Cooling Condition[J]. Rare Metal Materials and Engineering,2019,48(1):97~103.]
DOI:10.12442/j. issn.1002-185X.20170627