-5~1s-1的條件下進行熱壓縮實驗?;谡鎽驼鎽儗嶒灁祿?分別使用人工神經網絡(ANN)和Arrhenius方程建立超細晶純鈦的熱變形本構模型,研究其熱變形行為。實驗結果表明:在變形初期,流變應力隨應變的增大而升高,隨后趨于平緩,最終流變應力達到一個穩(wěn)定值。人工神經網絡訓練和預測結果表明:人工神經網絡最佳結構為3×12×1,人工神經網絡模型預測的平均相對誤差(AARE)為2.1%,相關系數(R)為0.9979,Arrhenius方程模型預測的AARE為11.54%,R為0.9464。即人工神經網絡模型能夠更加精確的描述超細晶純鈦的本構關系。通過對比不同溫度下兩種模型的誤差,人工神經網絡模型在高溫條件下具有更好的穩(wěn)定性。"/>

最新色国产精品精品视频,中文字幕日韩一区二区不卡,亚洲有码转帖,夜夜躁日日躁狠狠久久av,中国凸偷窥xxxx自由视频

+高級檢索
基于人工神經網絡的超細晶純鈦熱變形本構模型研究
DOI:
作者:
作者單位:

西安建筑科技大學冶金工程學院,西安建筑科技大學冶金工程學院,陜西省冶金工程技術研究中心;西安建筑科技大學冶金工程學院

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金(51474170)和陜西省自然科學基金(2016JQ5026)聯合資助


A Constitutive Model of Ultrafine Grained Pure Titanium at ElevatedTemperature Based on Artificial Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    對等通道轉角擠壓(ECAP)制備的超細晶純鈦,在溫度為250~450 ℃、應變速率為10-5~1s-1的條件下進行熱壓縮實驗。基于真應力和真應變實驗數據,分別使用人工神經網絡(ANN)和Arrhenius方程建立超細晶純鈦的熱變形本構模型,研究其熱變形行為。實驗結果表明:在變形初期,流變應力隨應變的增大而升高,隨后趨于平緩,最終流變應力達到一個穩(wěn)定值。人工神經網絡訓練和預測結果表明:人工神經網絡最佳結構為3×12×1,人工神經網絡模型預測的平均相對誤差(AARE)為2.1%,相關系數(R)為0.9979,Arrhenius方程模型預測的AARE為11.54%,R為0.9464。即人工神經網絡模型能夠更加精確的描述超細晶純鈦的本構關系。通過對比不同溫度下兩種模型的誤差,人工神經網絡模型在高溫條件下具有更好的穩(wěn)定性。

    Abstract:

    Ultrafine grained (UFG) pure titanium was prepared by ECAP up to four passes. The hot compression tests were conducted in the different temperatures (250~450 ℃) and the strain rates of 10-5~1s-1.The artificial neural network (ANN) and Arrhenius constitutive equation were used for establishing constitutiveSmodel of UFG pure titanium, respectively. The experimental results show that the flow stress increased with the increase of strain at the beginning of the deformation, then increased slowly. Finally, the stress reached a stable value. The experimental value and the predicted value of flow stress showed that the average absolute relative errors obtained from the artificial neural network model and Arrhenius constitutive equations were 2.1% and 11.54%, respectively. The correlation coefficient of the artificial neural network model and Arrhenius constitutive equations were 0.9979 and 0.9464, respectively. It means that the artificial neural network model can more accurately describe the constitutive relations of UFG pure titanium. By comparing the error of the two models under different temperatures, it can be find that artificial neural network model has better stability under the condition of high temperature.

    參考文獻
    相似文獻
    引證文獻
引用本文

劉曉燕,楊成,楊西榮.基于人工神經網絡的超細晶純鈦熱變形本構模型研究[J].稀有金屬材料與工程,2018,47(10):3038~3044.[liuxiaoyan, yangcheng, yangxirong. A Constitutive Model of Ultrafine Grained Pure Titanium at ElevatedTemperature Based on Artificial Neural Network[J]. Rare Metal Materials and Engineering,2018,47(10):3038~3044.]
DOI:[doi]

復制
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2017-01-08
  • 最后修改日期:2018-09-07
  • 錄用日期:2017-04-14
  • 在線發(fā)布日期: 2018-11-08
  • 出版日期: