95%),高強(抗拉強度UTS:900~1200MPa),優(yōu)異塑性(均勻塑性變形能力ε~40%)和良好的加工硬化行為(加工硬化區(qū)間超過350MPa)的Ti-Mo基亞穩(wěn)β鈦合金。顯微結構分析表明Ti-Mo基合金在塑性變形過程中產生了應力誘發(fā)馬氏體相變α?和{332}<113>機械孿晶,這導致合金具有以上優(yōu)異的性能。"/>

最新色国产精品精品视频,中文字幕日韩一区二区不卡,亚洲有码转帖,夜夜躁日日躁狠狠久久av,中国凸偷窥xxxx自由视频

+高級檢索
一種具有TRIP/TWIP效應的高強高塑性亞穩(wěn)β鈦合金設計及發(fā)展
DOI:
作者:
作者單位:

中國礦業(yè)大學材料科學與工程學院,西北工業(yè)大學材料學院,中國礦業(yè)大學材料科學與工程學院;,中國礦業(yè)大學材料科學與工程學院;,中國礦業(yè)大學材料科學與工程學院;,PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris (UMR 8247), 75005 Paris, France,中國礦業(yè)大學材料學院,中國礦業(yè)大學材料學院

作者簡介:

通訊作者:

中圖分類號:

TG113.12

基金項目:

國家自然科學基金資助(項目號51601216), 西北工業(yè)大學凝固技術國家重點實驗室開放課題資助(項目號SKLSP201501)和中國礦業(yè)大學學科前沿科學研究專項(項目號2015XKQY01)


The development of new beta titanium alloys combined high strength, large ductility and improved strain-hardening behavior due to TRIP/TWIP effects
Author:
Affiliation:

School of Material Science and Engineering,China University of Mining and Technology,Xuzhou,State Key Laboratory of Solidification Processing,Northwestern Polytechnical University,Xi’an,School of Material Science and Engineering,China University of Mining and Technology,Xuzhou,School of Material Science and Engineering,China University of Mining and Technology,Xuzhou,School of Material Science and Engineering,China University of Mining and Technology,Xuzhou,PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris (UMR 8247), 75005 Paris, France,School of Material Science and Engineering, China University of Mining and Technology,School of Material Science and Engineering, China University of Mining and Technology

Fund Project:

National Natural Science Foundation of China (Grant No. 51601216), the fund of the State Key Laboratory of Solidification Processing in NWPU (Grant No. SKLSP201501) and Fundamental Research Funds for the Central Universities (Grant No. 2015XKQY01)

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    相比不銹鋼或Co-Cr合金,鈦合金的低塑性以及加工硬化行為的缺失嚴重限制了其在高強和高塑性環(huán)境下的應用。針對這兩大缺陷,本文將不銹鋼中的TRIP/TWIP效應引入到β鈦合金設計中,采用d-電子設計方法和控制合金電子濃度(e/a)的策略,通過控制合金的β穩(wěn)定性,設計出具有TRIP/TWIP效應,極好的冷加工性能(冷軋變形率>95%),高強(抗拉強度UTS:900~1200MPa),優(yōu)異塑性(均勻塑性變形能力ε~40%)和良好的加工硬化行為(加工硬化區(qū)間超過350MPa)的Ti-Mo基亞穩(wěn)β鈦合金。顯微結構分析表明Ti-Mo基合金在塑性變形過程中產生了應力誘發(fā)馬氏體相變α?和{332}<113>機械孿晶,這導致合金具有以上優(yōu)異的性能。

    Abstract:

    Titanium and its alloys have been extensively used in numerous application fields. However, both their low ductility and their lack of work-hardening when compared with steels or Co-Cr alloys, limit their use in advanced applications where superior combinations of strength and ductility are required. Therefore, inspired from the superior mechanical properties of TRIP/TWIP steels (TRIP for Transformation Induced Plasticity and TWIP for Twinning Induced Plasticity), we proposed a new type of metastable β Ti-alloys showing combined TRIP/TWIP effects through controlling the β stability of Ti-alloys. The alloys were designed based on the “d-electron alloy design method” and controlling of electron/atom ratio (e/a). The results show that so-designed alloys display excellent combination of high strength (ultimate tensile strength ≈1020MPa), high ductility (uniform elongation 43%) and improved work-hardening behavior. The detailed microstructural analysis indicates that the superior performances arise from the synergic effects between α? phase transformation induced plasticity (TRIP) and {332}<113> twinning induced plasticity (TWIP).

    參考文獻
    相似文獻
    引證文獻
引用本文

張金勇,李金山,陳正,孟慶坤,張平,Sun Fan,沈承金,沈寶龍.一種具有TRIP/TWIP效應的高強高塑性亞穩(wěn)β鈦合金設計及發(fā)展[J].稀有金屬材料與工程,2018,47(9):2787~2792.[Zhang Jinyong.,Li Jinshan, Chen Zheng, Meng Qingkun, Zhang Ping, Sun Fan, Shen ChengJin, Shen Baolong. The development of new beta titanium alloys combined high strength, large ductility and improved strain-hardening behavior due to TRIP/TWIP effects[J]. Rare Metal Materials and Engineering,2018,47(9):2787~2792.]
DOI:[doi]

復制
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2016-11-16
  • 最后修改日期:2017-03-14
  • 錄用日期:2017-04-13
  • 在線發(fā)布日期: 2018-11-01
  • 出版日期: