最新色国产精品精品视频,中文字幕日韩一区二区不卡,亚洲有码转帖,夜夜躁日日躁狠狠久久av,中国凸偷窥xxxx自由视频

+高級檢索
基于BP神經(jīng)網(wǎng)絡(luò)的細(xì)晶Ti2AlNb基合金粉末球磨工藝研究
DOI:
作者:
作者單位:

哈爾濱工業(yè)大學(xué)材料學(xué)院

作者簡介:

通訊作者:

中圖分類號:

基金項目:


Research on Ball Milling Processing of Fine Crystal Ti2AlNb-based Alloy Powder Based on Back-propagation Neural Network
Author:
Affiliation:

Fund Project:

Scientific Research Program of the Educational Committee of Shanxi Province, China (2013JK0917); Scientific Research Program of Yan’an, China (2013-KG03)

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    本文應(yīng)用BP神經(jīng)網(wǎng)絡(luò)算法分析并預(yù)測了高能行星式球磨過程中工藝參數(shù)和球磨后Ti2AlNb基合金粉末的形貌特征之間的關(guān)系,建立了粉末參數(shù)預(yù)測模型。BP網(wǎng)絡(luò)模型的輸入?yún)?shù)為球磨轉(zhuǎn)速,球磨時間,球料比;輸出參數(shù)為球磨后Ti2AlNb基合金粉末的晶粒尺寸。BP網(wǎng)絡(luò)模型中間隱含層節(jié)點數(shù)為9,輸入、輸出函數(shù)分別為tansig、purelin。通過檢驗樣本驗證了所建立神經(jīng)網(wǎng)絡(luò)模型的準(zhǔn)確性。結(jié)果表明:該模型在容錯性和通用性等方面優(yōu)點突出,可用于預(yù)測球磨法制備細(xì)晶Ti2AlNb基合金粉末的晶粒尺寸,還可以彌補各種球磨過程物理模型應(yīng)用與表述方面的不足,對于實際的粉末冶金工藝研究工作具有一定的應(yīng)用價值和指導(dǎo)意義。

    Abstract:

    An artificial-neural-network (ANN) model which is used for the prediction of properties of the as-milled powder is developed for the analysis and prediction of correlations between processing (high-energy planetary ball milling) parameters and the morphological characteristics of Ti2AlNb-based alloy powder by applying the back-propagation (BP) neural network technique.In the BP model, the input parameters of the neural network model are milling speed, milling time and ball-to-powder weight ratio. The output of the model is the properties of the as-milled powder (specifically crystallite size). The number of node in the hidden layer is 9. Input and output functions are tansig and purelin, respectively. The accuracy of the established artificial neural network model was tested by the test data sample. It is shown that the predicted values coincide well with the test results owe to the advantages in fault-tolerance and commonality. Not only can the trained neural network model be used to predict the crystallite size of the as-milled Ti2AlNb-based alloy powder, but also can make up for deficiency of all kinds of physical model for ball milling process in application and expression, which has application value and far-reaching significance for the research work of the actual powder metallurgy process.

    參考文獻
    相似文獻
    引證文獻
引用本文

孫宇.基于BP神經(jīng)網(wǎng)絡(luò)的細(xì)晶Ti2AlNb基合金粉末球磨工藝研究[J].稀有金屬材料與工程,2017,46(12):3868~3874.[sun yu. Research on Ball Milling Processing of Fine Crystal Ti2AlNb-based Alloy Powder Based on Back-propagation Neural Network[J]. Rare Metal Materials and Engineering,2017,46(12):3868~3874.]
DOI:[doi]

復(fù)制
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2015-10-08
  • 最后修改日期:2016-02-14
  • 錄用日期:2016-03-29
  • 在線發(fā)布日期: 2018-01-04
  • 出版日期: