最新色国产精品精品视频,中文字幕日韩一区二区不卡,亚洲有码转帖,夜夜躁日日躁狠狠久久av,中国凸偷窥xxxx自由视频

+高級檢索
基于BP神經(jīng)網(wǎng)絡的置氫TC21合金力學性能預測
DOI:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家“973”計劃(2007CB613807);新世紀優(yōu)秀人才支持計劃(NCET-07-0696);凝固技術國家重點實驗室開放課題 (35-TP-2009)


Artificial Neural Network Model for the Prediction of Mechanical Properties of Hydrogenated TC21 Titanium Alloy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    基于神經(jīng)網(wǎng)絡的非線性映射和泛化能力,采用人工神經(jīng)網(wǎng)絡方法,建立了置氫TC21合金力學性能預測的BP神經(jīng)網(wǎng)絡模型。模型的輸入?yún)?shù)包括高溫拉伸試驗溫度和置氫含量,輸出參數(shù)為合金的常用力學性能指標,即抗拉強度和屈服強度。通過檢驗樣本驗證了ANN模型的準確性。結果表明:該模型具有容錯性好、通用性強等優(yōu)點,可以預測置氫TC21合金在不同拉伸溫度和不同置氫含量下的機械性能。同時,將神經(jīng)網(wǎng)絡技術應用于材料制備工藝設計領域,可以明顯地提高工藝設計效率,縮短實驗周期

    Abstract:

    Based on the ability of nonlinear mapping and generalization, an artificial neural network model for the prediction of mechanical properties of hydrogenated TC21 titanium alloy was established. The input parameters of the neural network model includes temperature tensile testing temperature and hydrogen content. The outputs of the model are mechanical properties namely ultimate tensile strength and tensile yield strength. The accuracy of ANN model was tested by the test sample. It is found that the predicted results are in good agreement with experimental value because of the characters of good fault-tolerance and strong commonality. The trained model can predict the mechanical properties of hydrogenated TC21 alloy under the condition of different experimental temperatures and contents. With the help of application of neural network technology in the field of material preparation process and design, the efficiency can be improved greatly, and the cycle of the actual experiment will be shortened obviously.

    參考文獻
    相似文獻
    引證文獻
引用本文

孫 宇,曾衛(wèi)東,趙永慶,張學敏,馬 雄,韓遠飛.基于BP神經(jīng)網(wǎng)絡的置氫TC21合金力學性能預測[J].稀有金屬材料與工程,2012,41(6):1041~1044.[Sun Yu, Zeng Weidong, Zhao Yongqing, Zhang Xuemin, Ma Xiong, Han Yuanfei. Artificial Neural Network Model for the Prediction of Mechanical Properties of Hydrogenated TC21 Titanium Alloy[J]. Rare Metal Materials and Engineering,2012,41(6):1041~1044.]
DOI:[doi]

復制
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2011-06-05
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期: