最新色国产精品精品视频,中文字幕日韩一区二区不卡,亚洲有码转帖,夜夜躁日日躁狠狠久久av,中国凸偷窥xxxx自由视频

+高級檢索
基于BP人工神經(jīng)網(wǎng)絡(luò)的TC17鈦合金顯微組織-力學(xué)性能關(guān)系預(yù)測
DOI:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家“973”計劃(2007CB613807);新世紀(jì)優(yōu)秀人才支持計劃(NCET-07-0696);國家科技支撐計劃(2007BAE07B03)


Prediction of Correlation between Microstructure and Tensile Properties in Titanium Alloys Based on BP Artificial Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    鈦合金的性能對其組織狀態(tài)十分敏感,與組織的多種顯微特征呈現(xiàn)非線性的交互關(guān)系。本研究在定量分析鈦合金顯微組織的基礎(chǔ)上,采用BP人工神經(jīng)網(wǎng)絡(luò)方法建立了TC17鈦合金組織與力學(xué)性能的關(guān)系模型。該模型輸入的顯微組織特征參數(shù)包括:α相體積分數(shù)、α相厚度和不同形態(tài)α相的體積分數(shù),輸出的力學(xué)性能包括抗拉強度、屈服強度、延伸率和斷面收縮率。結(jié)果表明,該模型具有很好的預(yù)測精度和泛化能力。應(yīng)用貝葉斯正則化和動量梯度下降學(xué)習(xí)法較好地解決了傳統(tǒng)BP人工神經(jīng)網(wǎng)絡(luò)訓(xùn)練高精度和預(yù)測低精度的過擬合現(xiàn)象。此模型的建立對構(gòu)建TC17合金利用組織預(yù)報力學(xué)性能的專家知識庫具有重要作用,而且對鈦合金專家系統(tǒng)的整體開發(fā)具有重要指導(dǎo)意義。

    Abstract:

    Titanium alloys’ properties are sensitive to the microstructure very much, which have nonlinear interactive relationship with the microstructral characteristics. In this study, a model was developed for the prediction of the correlation between microstructure and tensile properties in titanium alloys using artificial neural network (ANN). The inputs of the neural network were quantificational microstructure parameters, including thickness of α-laths, volume fraction of α-laths and Ferret Ratio. The outputs of the model were the tensile properties, including ultimate strength, yield strength, elongation and reduction of area. The model was based on back-error propagation (BP) neural network, and trained with the data collected from isothermal compression experiments of Ti17 alloys. A very good performance of the neural network was achieved such as prediction accuracy and generalization ability. Bayesian regularization and gradient descent learning method can solve the super-fitting problem of high-accuracy training and low-accuracy prediction of traditional BP artificial neural network. The model can be used for prediction of tensile properties of Ti17 alloys according to its microstructural features. Modeling this correlation is fairly necessary to build a robust expert database in titanium expert system.

    參考文獻
    相似文獻
    引證文獻
引用本文

邵一濤,曾衛(wèi)東,韓遠飛,周建華,王曉英,周義剛.基于BP人工神經(jīng)網(wǎng)絡(luò)的TC17鈦合金顯微組織-力學(xué)性能關(guān)系預(yù)測[J].稀有金屬材料與工程,2011,40(2):225~230.[Shao Yitao, Zeng Weidong, Han Yuanfei, Zhou Jianhua, Wang Xiaoying, Zhou Yigang. Prediction of Correlation between Microstructure and Tensile Properties in Titanium Alloys Based on BP Artificial Neural Network[J]. Rare Metal Materials and Engineering,2011,40(2):225~230.]
DOI:[doi]

復(fù)制
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2010-03-08
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期: