最新色国产精品精品视频,中文字幕日韩一区二区不卡,亚洲有码转帖,夜夜躁日日躁狠狠久久av,中国凸偷窥xxxx自由视频

+高級檢索
神經(jīng)網(wǎng)絡(luò)預(yù)測還原擴散法制備DyFe2合金轉(zhuǎn)化率的研究
DOI:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

TP183

基金項目:

遼寧省博士啟動基金(20021021)


Neural Network Prediction of Transformation Efficiency of DyFe2 Alloy Prepared by Reduction-Diffusion Process
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對還原擴散法制備DyFe2合金中的主要實驗參數(shù):反應(yīng)溫度、保溫時間、Ca的加入量及Fe的粒度,建立BP神經(jīng)網(wǎng)絡(luò),進行仿真,預(yù)測DyFe2合金的轉(zhuǎn)化率。以44組實驗數(shù)據(jù)作為訓(xùn)練樣本,進行網(wǎng)絡(luò)設(shè)計,并對網(wǎng)絡(luò)進行了測試。證明該網(wǎng)絡(luò)能夠預(yù)測不同實驗參數(shù)下DyFe2合金的轉(zhuǎn)化率,且具有良好的性能。該網(wǎng)絡(luò)的設(shè)計可以縮短實驗周期,降低實驗成本,并有利于工藝優(yōu)化。

    Abstract:

    Based on the main experiment parameters of DyFe2 alloy preparation by reduction-diffusion process: reaction temperature, holding time, added quantity of Ca and particle size of Fe, the BP neural network was established and used to predicate the transformation efficiency of DyFe2 alloy. The neural network was simulated by 44 groups of experimental data and was tested. It has been proved that the neural network has good performance to predict the transformation efficiency of DyFe2 alloy. This design of neural network is able to shorten the time of experiment, reduce the experiment cost, and optimize the preparation processes.

    參考文獻
    相似文獻
    引證文獻
引用本文

郭廣思 成永君 胡小媚 葉飛.神經(jīng)網(wǎng)絡(luò)預(yù)測還原擴散法制備DyFe2合金轉(zhuǎn)化率的研究[J].稀有金屬材料與工程,2007,36(4):721~723.[Guo Guangsi, Cheng Yongjun, Hu Xiaomei, Ye Fei. Neural Network Prediction of Transformation Efficiency of DyFe2 Alloy Prepared by Reduction-Diffusion Process[J]. Rare Metal Materials and Engineering,2007,36(4):721~723.]
DOI:[doi]

復(fù)制
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:2006-09-18
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期: